Hopf bifurcation and global stability of a diffusive Gause-type predator–prey models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Stability and Hopf Bifurcation for Gause-Type Predator-Prey System

A class of three-dimensional Gause-type predator-prey model is considered. Firstly, local stability of equilibrium indicating the extinction of top-predator is obtained. Meanwhile, we construct a Lyapunov function, which is an extension of the Lyapunov functions constructed by Hsu for predator-prey system 2005 , to give the global stability of the equilibrium. Secondly, we analyze the stability...

متن کامل

Stability and Hopf Bifurcation Analysis for a Gause-Type Predator-Prey System with Multiple Delays

and Applied Analysis 3 Letting λ = iω 1 (ω 1 > 0) be a root of (11), then we have m 1 ω 1 sin τ 1 ω 1 = p 2 ω 2 1 − n 0 , m 1 ω 1 cos τ 1 ω 1 = ω 3 1 − n 1 ω 1 . (12)

متن کامل

Global stability and Hopf bifurcation in a delayed diffusive Leslie-Gower predator-prey System

In this paper, we consider a delayed diffusive Leslie–Gower predator–prey system with homogeneous Neumann boundary conditions. The stability/instability of the coexistence equilibrium and associated Hopf bifurcation are investigated by analyzing the characteristic equations. Furthermore, using the upper and lower solutions method, we give a sufficient condition on parameters so that the coexist...

متن کامل

Hopf Bifurcation Analysis on General Gause-Type Predator-Prey Models with Delay

and Applied Analysis 3 a stable equilibrium to be unstable and induce bifurcations as well as periodic oscillations. Under the hypothesis that prey x t has a gestation in 1.1 , we modify it to be the following one: dx t dt xg x − yp x − τ , dy t dt y −h ep x ] − zqy, dz t dt z −s mqy, 1.3 where τ is the time of gestation. The purpose of current work is to analyze the effect of delay on the dyna...

متن کامل

Hopf bifurcation analysis of a diffusive predator-prey model with Monod-Haldane response

In this paper, we have studied the diffusive predator-prey model with Monod-Haldane functional response. The stability of the positive equilibrium and the existence of Hopf bifurcation are investigated by analyzing the distribution of eigenvalues without diffusion. We also study the spatially homogeneous and non-homogeneous periodic solutions through all parameters of the system which are spati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2016

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2016.09.022